3月4日记者获悉,近日,西安电子科技大学李龙教授团队与东南大学崔铁军院士合作在自驱动可编程信能同传超材料/超表面方面取得了突破性进展。

据悉,该成果提出了一种全新的自驱动无尾信能超材料/超表面系统。可编程超表面因其集成了有源微波控制器件,如PIN二极管、变容二极管、MEMS开关或三极管等,可根据外部环境需求对电磁波和信息进行实时动态的调控,为新型电子信息系统提供了一种全新的范式,在5G/6G无线通信智能超表面(RIS)领域和新体制雷达相控阵领域具有重要的应用前景。

但目前的可编程超表面需要外部的直流电源驱动,通过直流偏置网络才能实现对有源器件的控制,这根电源线就像尾巴一样,大大约束了可编程超表面的应用和部署,特别是在一些无人值守的区域、峡谷或山区等存在供电困难的特殊应用场景。

为了克服上述困难,实现可编程超表面“无尾化”的愿景,研究人员将可编程超表面技术和无线功率传输与自适应无线能量收集技术相结合,创新性地提出了一种双频共口径自驱动无尾信能超表面系统。该系统通过两种工作模式,实现了无线收能-供能-通信的闭环,摆脱了电源线或电池的束缚,突破了传统可编程超表面集成度低,受外部电源驱动和距离限制严重等问题。研究人员在室内和室外场景中测试了自驱动无尾信能超表面系统的无线信道调控能力以及无线能量和信息同时传输的实验效果,这些实验验证了无尾信能超表面的可行性和有效性,为可编程超表面的供电方式提供了一种新的思路。

该成果深度研究了无尾信能超表面的实现模型和工作参数,通过引入能量超表面和整流网络,去除了传统可编程超表面中的外部直流电源,实现了非接触式远程可编程超表面的自供电模式,解决可编程超表面系统的拖尾问题。该系统可实现无线能量和信息的同时传输,进一步提升了“无尾”信能超表面的集成度和应用度,为大规模自驱动可编程信能同传超材料新型电子系统的研制奠定了基础。相关研究成果登上国际权威刊物《先进材料》,西安电子科技大学常明扬博士为第一作者,李龙教授和东南大学崔铁军院士为通讯作者,西安电子科技大学为第一单位。  

责任编辑:黄蕊